SAE Inc. Standard No. 106 Denisty of Cementitious Products

ABSTRACT

This test method is used to calculate the density of SAE's cementitious products such as ConduCrete when they are a dry powder, a slurry, and a cured solid. The volume per bag of ConduCrete can also be calculated.

1. EQUIPMENT REQUIRED

- 1.1 Electronic balance accurate to 0.005 kg
- 1.2 Concrete mixing equipment
- 1.3 Tape measure or ruler
- 1.4 Beaker
- 1.5 Electronic balance accurate to 1 g
- 1.6 Tamping rod
- 1.7 Vernier caliper
- 1.8 Mixing stand

2. PROCEDURE

- 2.1 Weigh an empty 5 US gallon pail on a scale accurate to +/- 0.005 kg and leave the pail on the scale.
- 2.2 Pour the required amount of powdered ConduCrete into the 5 US gallon pail and record the height of product in the pail and the weight of the pail. Set the pail aside.
- 2.3 Weigh a second empty 5 US gallon pail on the scale and leave the pail on the scale
- 2.4 Pour the required amount of water to form a ConduCrete slurry into the 5 US gallon pail.
- 2.5 Place the pail of water in the mixing stand and add the powdered ConduCrete. Mix until the particles are thoroughly dispersed.
- 2.6 Record the height of product in the pail and the weight of the pail.

- 2.7 Pour / scoop the ConduCrete slurry into a 4"x8" cylinder until half full.
- 2.8 Using the tamping rod, rod the material 25 times then tap the exterior of the cylinder 15 times.
- 2.9 Pour / scoop the ConduCrete slurry into the cylinder until full.
- 2.10 Rod the material an additional 25 times, ensuring that the tamping rod reaches into the first layer of material at least once.
- 2.11 Tap the exterior of the cylinder an additional 15 times and then strike off the excess material so that the top of the sample is level.
- 2.12 Close the lid and label the sample accordingly.
- 2.13 Pour the remaining product out of the pail and dispose accordingly.
- 2.14 Fill the pail with water, keeping a record of the volume of water added in liters, until the height of the water reaches the height that the dry ConduCrete powder and ConduCrete slurry were in the pail.
- 2.15 Allow the ConduCrete sample in the cylinder to cure for 28 days then remove from the cylinder.
- 2.16 Weigh the sample and record the sample dimensions, diameter and height, using the vernier caliper.

3. CALCULATIONS

3.1 To calculate the volume of the dry ConduCrete powder and the ConduCrete slurry, convert the volume of water from liters to cubic meters:

$$V = m^3_{water} = \frac{L water}{1000}$$

where

V is the volume of the product in m^3 m^3_{water} is cubic meters of water L_{water} is liters of water

3.2 To calculate the volume of the cured Conducrete:

$$V = \pi r^2 h$$

where.

V is the volume of the cured ConduCrete in m³ r is the radius of the cured ConduCrete cylinder h is the height of the cured ConduCrete cylinder

3.3 Calculate the density of the dry ConduCrete powder, ConduCrete slurry, and cured ConduCrete:

$$D = \frac{m}{V}$$

where,
D is density in kg/m3
m is mass in kg
V is volume in m³

3.4 Calculate the density of the product in lbs/ft³:

$$1 \text{ kg/m}^3 = 0.0624 \text{ lbs/ft}^3$$

3.5 Report the density of the product in kg/m³ and lbs/ft³

Published Date: November 2021